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Abstract. In this note we present inequalities relating the successive
minima of a o-symmetric convex body and the successive inner and
outer radii of the body. These inequalities build a bridge between known
inequalities involving only either the successive minima or the successive
radii.

1. Introduction

Let Kn be the set of all convex bodies, i.e., compact convex sets with
non-empty interior, in the n-dimensional Euclidean space Rn, and let Kn

0 be
the family of all o-symmetric convex bodies, i.e., K ∈ Kn with K = −K.
Let 〈 ·, ·〉 and | · | be the standard inner product and Euclidean norm in Rn,
respectively. We denote the n-dimensional unit ball by Bn. The volume of a
set M ⊂ Rn, i.e., its n-dimensional Lebesgue measure, is denoted by V(M)
and we set κn = V(Bn). If K ⊂ Rn is an i-dimensional convex body, we
write Vi(K) to denote its i-dimensional volume.

The set of all i-dimensional linear subspaces of Rn is denoted by Ln
i . For

L ∈ Ln
i , L⊥ denotes its orthogonal complement and for K ∈ Kn and L ∈ Ln

i
the orthogonal projection of K onto L is denoted by K|L. For M ⊂ Rn,
linM and conv M denote respectively the linear and the convex hull of M .

The diameter, the minimal width, the circumradius and the inradius of a
convex body K are denoted by D(K), ω(K), R(K) and r(K), respectively.
For more information on these functionals and their properties we refer to
[3, pp. 56–59]. If f is a functional on Kn depending on the dimension of the
space in which a convex body K is embedded, and if K is contained in an
affine space A then we write f(K;A) to denote that f has to be evaluated
with respect to the space A. With this notation we define the following
successive outer and inner radii.

Definition 1.1. For K ∈ Kn and i = 1, . . . , n let

Ri(K) = min
L∈Ln

i

R(K|L) and ri(K) = max
L∈Ln

i

max
x∈L⊥

r
(
K ∩ (x + L);x + L

)
.
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So Ri(K) is the smallest radius of a K containing solid cylinder with i-
dimensional spherical cross section, and ri(K) is the radius of the greatest
i-dimensional ball contained in K. We obviously have

Rn(K) = R(K), R1(K) =
ω(K)

2
, rn(K) = r(K) and r1(K) =

D(K)
2

.

Notice that the outer radii are increasing in i, whereas the inner radii are
decreasing in i. We also have for i ∈ {1, . . . , n}

(1.1) 1 ≤ Ri(K)
rn−i+1(K)

< i + 1.

For the lower bound, which is best possible, we refer to [2, Lemma 2.1].
To determine the optimal upper bound is still an open problem, also in the
o-symmetric case. The bound presented above can be found in [15] (see also
[14]). The following relation between the in- and outer radii and the volume
of an arbitrary convex body K ∈ Kn can be found in [2, Corollary 2.1]:

(1.2)
2n

n!
r1(K) · ... · rn(K) ≤ V(K) ≤ 2nR1(K) · ... · Rn(K).

In the case when K is o-symmetric, we also have (see [2, Theorem 2.1])

(1.3)
2n

n!
R1(K) · ... · Rn(K) ≤ V(K) ≤ 2nr1(K) · ... · rn(K).

For more information on these successive radii, their size for special bodies
as well as computational aspects of these radii we refer to [1, 2, 4, 5, 6, 7, 12].

Here we are mainly interested in the relations of these radii to the suc-
cessive minima of a o-symmetric convex body with respect to the integer
lattice, which we introduce next.

We denote by Zn the integer lattice, i.e., the lattice of all points with
integral coordinates in Rn. Then any lattice Λ of Rn can be obtained as
Λ = BZn with B ∈ GLn(R), and the determinant of the lattice is detΛ =
|det B| (see [9, p. 23]).

For K ∈ Kn
0 and a lattice Λ, the i-th successive minimum λi(K, Λ) of K

with respect to Λ, i = 1, . . . , n, is defined as

λi(K, Λ) = min
{
λ ∈ R : λ > 0,dim(λK ∩ Λ ≥ i)

}
.

Clearly λ1(K, Λ) ≤ · · · ≤ λn(K, Λ). The second fundamental theorem of
Minkowski (see e.g. [9, s. 9.1, 9.4], [11], [13]) relates the successive minima
with the volume of a convex body K ∈ Kn

0 :

(1.4)
2n

n!
det Λ ≤ λ1(K, Λ) · ... · λn(K, Λ)V(K) ≤ 2n det Λ.

In the case of the integer lattice Zn we will just write λi(K) instead of
λi(K, Zn). In this paper we relate the successive minima with the inner and
outer radii. Of course, the most natural inequalities between these two series
would be of the type λi(K)rj(K) or λi(K)Rj(K). The next proposition
shows, however, that in general we can not bound these products.
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Proposition 1.1. Let K ∈ Kn
0 . Then

1
R(K)

≤ λi(K) ≤ 1
r(K)

, 1 ≤ i ≤ n.

In all other cases, the products λi(K)rj(K) and λi(K)Rj(K) can not be
bounded neither from above or below by a constant depending only on the
dimension.

Therefore we consider products of several radii and successive minima.

Theorem 1.1. Let K ∈ Kn
0 . For i = 1, . . . , n− 1 we have

λi+1(K) · ... · λn(K)V(K) ≤ 2nr1(K) · ... · ri(K),(1.5)

λ1(K) · ... · λi(K)V(K) ≥ 2n

n!
R1(K) · ... · Rn−i(K).(1.6)

None of these inequalities can be improved.

By (1.1) we have rn−j+1(K) ≤ Rj(K) and so:

Corollary 1.1. Let K ∈ Kn
0 . For i = 1, . . . , n− 1 we have

λi+1(K) · ... · λn(K)V(K) ≤ 2nRn−i+1(K) · ... · Rn(K),(1.7)

λ1(K) · ... · λi(K)V(K) ≥ 2n

n!
ri+1(K) · ... · rn(K).(1.8)

None of these inequalities can be improved.

For inequality (1.5) and inequality (1.7) (inequality (1.6) and inequality
(1.8)), the “limit” case i = 0 (i = n), i.e., when no radii appear in the
inequalities, is Minkowski’s inequality (1.4). The “limit” case i = n (i = 0),
i.e., when no successive minima appear in the formulae, gives the upper
(lower) bounds for the volume in (1.2) and (1.3). Thus, these inequalities
build a bridge between Minkowski’s inequality and the known inequalities
involving in- and outer radii.

In the next section we present the proofs of the main results, as well as
some consequences for general (not necessarily o-symmetric) convex bodies.

2. Proofs of the main results

Before we start with the proof of Proposition 1.1 we have briefly to intro-
duce the concept of polar bodies.

For a convex body K ∈ Kn containing the origin in its interior, the polar
body of K is the convex body K∗ =

{
y ∈ Rn : 〈x, y〉 ≤ 1, for all x ∈ K

}
(see e.g. [17, s. 1.6]). The in- and outer radii of a o-symmetric convex body
K ∈ Kn

0 and its polar are related by the following identity, for which we
refer to [6, (1.2)]:

(2.1) Ri(K∗) ri(K) = 1 for i = 1, . . . , n.
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Proof of Proposition 1.1. Since r(K)Bn ⊆ K we obviously have

λi(K) ≤ λi

(
r(K)Bn

)
=

1
r(K)

λi(Bn) =
1

r(K)

for 1 ≤ i ≤ n. Analogously, from K ⊆ R(K)Bn we find λi(K) ≥ 1/R(K)
and so we trivially get the inequalities in the proposition.

Next we show that the inequalities above are the only possible upper and
lower bounds for the products λi(K)rj(K) and λi(K)Rj(K). In order to see
that there is no upper bound on λi(K)rj(K), j = 1, . . . , n− 1, we consider
the j-dimensional unit ball Bj embedded in a j-dimensional irrational plane
L ∈ Ln

j , i.e., L∩Zn = {0}. Taking the convex hull of Bj and suitable points
with irrational coordinates, close enough to L, we can find an n-dimensional
convex body K0 with rj(K0) = 1 but arbitrarily large λi(K0).

The non-existence of lower bounds on λi(K)rj(K), j = 2, . . . , n, is shown
by the following cross-polytope C∗

n(m). For m ∈ N and i = 1, . . . , n, let vi :=
(mi−1, . . . ,m, 1, 0, . . . , 0)ᵀ ∈ Rn, and C∗

n(m) := conv{±vi : i = 1, . . . , n}.
C∗

n(m) is a o-symmetric lattice cross-polytope containing the origin as the
only interior lattice point. Hence

λi

(
C∗

n(m)
)

= 1

for all i = 1, . . . , n and next we show the inner radii rj

(
C∗

n(m)
)
, j = 2, . . . , n,

can be arbitrarily small. Since rj are decreasing in j it suffices to verify that
for r2. Moreover, from r2

(
C∗

n(m)
)
≤ Rn−1

(
C∗

n(m)
)

(cf. (1.1)) we just have
to check that for a suitable projection π, the lengths of the projected vertices
π(vi) can be made arbitrarily small. Let π be the orthogonal projection onto
the hyperplane orthogonal to vn. The k-th coordinate of the projection
π(vi) = vi − 〈vi, vn〉 /|vn|2vn of vi is given by

(
π(vi)

)
k

=


mi−k 1 + m2 + · · ·+ m2(n−i−1)

1 + m2 + · · ·+ m2(n−1)
, for k = 1, . . . , i,

−m2n−i−k 1 + m2 + · · ·+ m2(i−1)

1 + m2 + · · ·+ m2(n−1)
, for k = i + 1, . . . , n.

Hence

π(vi) = vi −
〈vi, vn〉
|vn|2

vn → (0, . . . , 0)ᵀ when m →∞,

and so Rn−1

(
C∗

n(m)
)

tends to zero as m approaches infinity.
In order to deal with the outer radii we use polarity. By (2.1) we may

write

λi(K)Rj(K) =
λi(K)λn−i+1(K∗)
λn−i+1(K∗)rj(K∗)

.

By classical results in Geometry of Numbers we know that the numerator
is bounded from above and below (cf. [8, Theorem 23.2]). Hence, by taking
K as the polar body of C∗

n(m) and the foregoing discussion on the inner
radii we see that λi(K)Rj(K) is not bounded from above for j ≥ 2; by
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taking K = K∗
0 we get that λi(K)Rj(K) is not bounded from below for

j ≤ n− 1. �

Next we come to the proof of Theorem 1.1, providing upper and lower
bounds for products of successive minima in terms of the in- and outer radii.

Proof of Theorem 1.1. We start with inequality (1.5). Let z1, . . . , zi ∈ K be
i linearly independent points with λj(K)zj ∈ λj(K)K ∩ Zn. We consider a
suitable (n− i)-dimensional coordinate plane Ln−i =

{
x ∈ Rn : xj1 = · · · =

xji = 0, jk ∈ {1, . . . , n}
}

such that

(2.2) lin{z1, . . . , zi} ∩ Ln−i = {0}.
Denoting by Zn−i the sublattice of all points in Ln−i with integer coordina-
tes, Minkowski’s second fundamental theorem assures that

λ1(K ∩ Ln−i, Zn−i) · ... · λn−i(K ∩ Ln−i, Zn−i)Vn−i(K ∩ Ln−i) ≤ 2n−i.

From (2.2) we know that λj(K ∩ Ln−i, Zn−i)K contains i + j linearly inde-
pendent points of Zn, for j = 1, . . . , n− i. Therefore,

λi+j(K) ≤ λj(K ∩ Ln−i, Zn−i), j = 1, . . . , n− i,

and hence

(2.3) λi+1(K) · ... · λn(K)Vn−i(K ∩ Ln−i) ≤ 2n−i.

With Li = L⊥n−i we get by the o-symmetry of K (cf. [10])

Vn−i(K ∩ Ln−i) ≥
V(K)

Vi(K|Li)
.

Since K|Li is an i-dimensional o-symmetric convex body, we have (see
[2, Theorem 2.1]) Vi(K|Li) ≤ 2ir1(K|Li) · ... · ri(K|Li). Together with
rj(K|Li) ≤ rj(K) (see [2, Lemma 2.1]), we get

Vi(K|Li) ≤ 2ir1(K) · ... · ri(K).

Therefore

Vn−i(K ∩ Ln−i) ≥
V(K)

2ir1(K) · ... · ri(K)
and using (2.3) we obtain

λi+1(K) · ... · λn(K)V(K) ≤ 2nr1(K) · ... · ri(K).

In order to show that inequality (1.5) can not be improved it suffices to
consider the tightness of inequality (1.7) in Corollary 1.1. Let Q(µ) be the
orthogonal parallelepiped with edge-lengths µ, µ2, . . . , µn, for µ ≥ 1. The
successive minima of such a box are λj

(
Q(µ)

)
= 2/µn−j+1, j = 1, . . . , n,

the outer radii Rj are given by Rj

(
Q(µ)

)
= (1/2)

(∑j
k=1 µ2k

)1/2 (see [5,
Theorem 4.4]) and for the volume we find V

(
Q(µ)

)
= µ · ... · µn. Thus∏n

j=i+1 λj

(
Q(µ)

)∏n
j=n−i+1 Rj

(
Q(µ)

)V
(
Q(µ)

)
= 2i 2n−iµn−i+1 · ... · µn∏n

j=n−i+1

(∑j
k=1 µ2k

)1/2
,
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which tends to 2n as µ approaches infinity.
Now we prove inequality (1.6). Again let z1, . . . , zi ∈ K be i linearly

independent points with λj(K)zj ∈ λj(K)K ∩ Zn. We denote by uj :=
λj(K)zj , and we consider the i-dimensional sublattice Λi of Zn determined
by {u1, . . . , ui}. Clearly, det Λi ≥ 1. Minkowski’s lower bound in (1.4) gives

2i

i!
≤ 2i

i!
det Λi ≤ λ1(K ∩ linΛi,Λi) · ... · λi(K ∩ linΛi,Λi)Vi(K ∩ linΛi).

Since λj(K ∩ linΛi,Λi) = λj(K), 1 ≤ j ≤ i, we can write

(2.4)
2i

i!
≤ λ1(K) · ... · λi(K)Vi(K ∩ linΛi).

With Ln−i = (linΛi)⊥ we know that (see [16])

Vi(K ∩ linΛi)Vn−i(K|Ln−i) ≤
(

n

i

)
V(K).

Since K|Ln−i is an (n − i)-dimensional o-symmetric convex body we have
(see [2, Theorem 2.1])

Vn−i(K|Ln−i) ≥
2n−i

(n− i)!
R1(K|Ln−i) · ... · Rn−i(K|Ln−i),

and since Rj(K|Ln−i) ≥ Rj(K) (see [2, Lemma 2.1]) we arrive at

Vn−i(K|Ln−i) ≥
2n−i

(n− i)!
R1(K) · ... · Rn−i(K).

Therefore

Vi(K ∩ linΛi) ≤
(

n

i

)
V(K)

Vn−i(K|Ln−i)
≤ n!

i!2n−i

V(K)
R1(K) · ... · Rn−i(K)

,

and with (2.4) we get

2n

n!
R1(K) · ... · Rn−i(K) ≤ λ1(K) · ... · λi(K)V(K).

To show that inequality (1.6) can not be improved it suffices to consider
the tightness of inequality (1.8) in Corollary 1.1. We consider for µ > 1
the orthogonal cross-polytope C∗

n(µ) := conv{±µiei : i = 1, . . . , n}, where
ei denotes the i-th canonical unit vector. The successive minima of such a
cross-polytope are λj

(
C∗

n(µ)
)

= 1/µn−j+1, j = 1, . . . , n, the inner radii rj

are given by rj

(
C∗

n(µ)
)

=
(∑n

k=n−j+1 µ−2k
)−1/2 (see [5, Theorem 4.4]) and

for its volume we find V
(
C∗

n(µ)
)

= (2n/n!)µ · ... · µn. Thus∏i
j=1 λj

(
C∗

n(µ)
)∏n

j=i+1 rj

(
C∗

n(µ)
)V

(
C∗

n(µ)
)

=
2n

n!
µ · ... · µn−i∏n

j=i+1

(∑n
k=n−j+1 µ−2k

)−1/2
,

which tends to 2n/n! when µ →∞. �
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In order to present some inequalities as in Theorem 1.1 for arbitrary
convex bodies, we write DK = K +(−K) for the difference body of a convex
body K ∈ Kn. DK is certainly o-symmetric, and for further properties we
refer for instance to [8, s. 9.5]. The central symmetral of K is just the convex
body K = (1/2)DK (see [3, p. 79] for a study of this symmetrization).

As a consequence of Corollary 1.1 we get the following result for general
convex bodies.

Corollary 2.1. Let K ∈ Kn. For i = 1, . . . , n− 1 we have

λi+1(DK) · ... · λn(DK)V(K) ≤ 2iRn−i+1(K) · ... · Rn(K).(2.5)

λ1(DK) · ... · λi(DK)V(DK) ≥ 22n−i

n!
ri+1(K) · ... · rn(K).(2.6)

None of these inequalities can be improved.

Proof. Let K ∈ Kn. Inequality (1.7) and inequality (1.8) applied to the
central symmetral K give

λi+1(K) · ... · λn(K)V(K) ≤ 2nRn−i+1(K) · ... · Rn(K)

and

λ1(K) · ... · λi(K)V(K) ≥ 2n

n!
ri+1(K) · ... · rn(K).

It is well known that central symmetrization does not decrease the volume
(cf. e.g. [3, p. 79]) and so we have V(K) ≤ V(K). Moreover, for the outer
radii Rj it holds (see [12, Lemma 2.1]) Rj(K) ≤ Rj(K), and for the inner
radii rj we have (see [12, Remark 2.1]) rj(K) ≥ rj(K), j = 1, . . . , n. Then
writing K = (1/2)DK we obtain

2n−iλi+1(DK) · ... · λn(DK)V(K) ≤ 2nRn−i+1(K) · ... · Rn(K)

and

2iλ1(DK) · ... · λi(DK)
1
2n

V(DK) ≥ 2n

n!
ri+1(K) · ... · rn(K),

which prove the result. The same orthogonal parallelepiped and the same
orthogonal cross-polytope considered in the proof of Theorem 1.1 show that
inequality (2.5) and inequality (2.6), respectively, can not be improved. �

Remark 2.1. In Corollary 2.1 the well-known Rogers-Shephard inequality
V(DK) ≤

(
2n
n

)
V(K) (see [17, s. 7.3]) can be used in order to express ine-

quality (2.6) in terms of the volume of K. But then the bound is not best
possible.

We finally remark that identity (2.1) allows to express the inequalities in
Theorem 1.1 in terms of the in- and outer radii of the polar body.
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Remark 2.2. Let K ∈ Kn
0 . For i = 1, . . . , n− 1 we have

λi+1(K) · ... · λn(K) R1(K∗) · ... · Ri(K∗)V(K) ≤ 2n,

λ1(K) · ... · λi(K) r1(K∗) · ... · rn−i(K∗)V(K) ≥ 2n

n!
.

None of these inequalities can be improved.

In the same way we can rewrite Corollary 1.1 and Corollary 2.1 in terms
of the radii of the polar body.
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